&S~

3277

$

GPO PRICE

CFSTI PRICE(S) $
Hard copy (HC)
Microfiche (MF)

# 653 July 65

(THRU)
(CoDl

g
3

36

L]

54

TACCESSION NUMBER)

a

o’

e~

5 -

fims,
i

f£

N

~———

[
. -

STUDY OF A GLOBAL SEARCH AIGORITHM FOR OPTIMAL CONTROL
Elwood C. Stewart, William P. Kavanaugh,

and David H. Brocker

Research Scientists
Ames Research Center, NASA

Moffett Field, California

SUMMARY

In this paper a feasible method of implementing the
Maximum Principle is given based on an adaptive random
search algorithm which utilizes direct measurements of

the boundary cost-function hyper-surfaces. No restric-

tions are placed on the continuity of the surfaces or

the number of valleys. The adaption enhances convergence

by varying the mean and variance of a probability distribu-

tion as a function of the past performance. The algorithm

has both local and global search properties so that "hanging

up" in local valleys is avoided.

A hybrid computer implementation of the algorithm is

discussed. The usefulness of the algorithm is investigated

experimentally for a fifth-order nonlinear minimum-fuel

orbit-transfer problem. Convergence is generally obtained

within several thousand iterations (one to two minutes).

Details are given on the manner in which the system iterates,
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typical solutions obtained for a wide range of situations,
and the convergence properties of several variations of
the basic algorithm. Cross sections through the boundary
hyper ~-surfaces reveal the striking irregularities which
high-order systems can have and, hence, demonstrate the
effectiveness of the adaptive random search approach in

coping with them.

INTRODUCTION

The Pontryagin Maximum Principle is an exceedingly
elegant and powerful theory for determining the optimal
control of dynamic systems describable by nonlinear dif-
ferential equations with bounded control. Although there
has been a flurry of activity for several years in its
application to low-order systems, there have been few
applications to high-order systems. For high-order systems
the Maximum Principle yields much information about the
nature of the solution, but the actual solution is generally
difficult to obtain. The reason‘for this is that a diffi-
cult mixed boundary-value problem is invariably encountered,
one in which the known boundary conditions are divided between
initial and terminal values. Furthermore, the mapping from
the initial to termihal boundary values is not generally

explicitly known.



-3-

One possible approach to the boundary-value problem is
based on some form of the gradient method. However, there
are several disadvantages in this approach: only local prop-
erties are utilized, only one local minimum is implicitly
assumed, and the gradient is not analytically available.

These difficulties were shown in reference 1 to lead to con-
vergence problems. Thus the approach is of limited value when
the surface being studied is multi-peaked, discontinuous, or
very flat in certain regions. Random search methods would
seem to be promising in overcoming some of the above defiéien-
cies. ©Such methods have been used mostly in connection with
direct search problems (refs. 2 and 3). However, in a recent
study (ref. 4) a fixed-step, random-sign-type search was used
to implement the Maximum Principle, and application was made
to linear second-and third-order systems.

In this paper we will investigate a more general approach
based on an adaptive random search method for solving the two-
point boundary-value problem inyolved in the Maximum Principle.
The search has both local and global properties. The method
does not depend on the continuity of the surface being searched
or the number of minima, and does not require that an analytical
expression for the surface be known. In the sections to
follow, the adaptivé random search will be described, the

hybrid computer realization discussed, and the results of
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b an application of the method to a fifth-order nonlinear

orbit -transfer problem presented.

THE ADAPTIVE RANDOM SEARCH AIGORITHM

General Approach

The class of problems considered here are restricted to
those for which the Maximum Principle is applicable. Famil-
iarity with the Meximum Principle is assumed (refs. 5, 6, 7).
Thus, we will not review the derivation, the theorems, the
assumptions involved, or the boundary-value theory. TFor
purposes of notation, however, a few remarks are appropriate.
The system to be controlled is defined by the vector equation.

x = f(x, u, t) (1)
where x = (x1, Xg, - » - Xp), u = (W, us, . . . up), and
uelU, the control region. Interest will center on fixed-time
problems because of-its convenlence in computer operation.
It will be desired to take the system from a given state
x(0) to a final target set S so as to minimize the

generalized cost function
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n

C = }: aixi(T) (2)

i=o0

where x,(t) is the auxiliary state associated with the
quantity to be minimized (ref. 7). Some of the possible
target sets of interest are (a) SeR,, (b) S< Ry, and

(c) 8 = xp€Ryp, corresponding to a free point, a subset of
the whole space R, and a fixed point. The solution to

the problem invariably requires the solution to the set of

equations
u=u(x, p, t)
x = £(x, u, t) (3)
b =glp, x, u, t)

where the known boundary values are divided between the
initial and terminal values. The final boundary condition
required on p 1is dependent on the desired final boundary
condition on the states.

The general approach to be used here to obtain
explicit solutions to the Maximum Principle is based on an
adaptivé random search procedure. A hybrid computer diagram
of the approach is illustrated in figure 1. We will be
concerned with the fixed time interval O to T; however,
it is trivial to vary this time in the computer implementa-

tion. The left half of the figure, indicated by the analog

computation, is an implementation of the set of equations (3).

Fig.
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The right half, indicated by the digital computation, is the
algorithm which will enable the boundary conditions involved
in the Maximum Principle to be satisfied.

Let us discuss the algorithm in detail. The basic notion
in the random search glgorithm is to select the initial con-
dition vector for the adjoint equations from a noise source,
in this case a gaussian distribution with fixed mean m and
fixed standard deviation o¢. Conceptually, the mean and stan-
dard deviation can be separated as indicated in the figure by
adding the mean m to the output of a gaussian noise source
with standard deviation o and zero mean. Thus, on any kth

iteration the vector pk is

k k k

pC=mt o+ (4)
The gaussian source generates a purely random, gaussian,
» n-dimensional vector sequence {gk} with zero mean and
independent components:
n = E(gk) =0
cov(ed, eK) =@ if =k (5)
0 if j#k
where tE = (E1, Eo, « « En)
Q = o3I

and I is the identity matrix.

Continuing around the loop in figure 1, the value of pk
as determined by equation (4) becomes p(0), the initial
condition for the adjoint equation. Since the value of p(0)

together with the given x(0) is sufficient to define a
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gsolution of the set (3), these equations, as represented by
the left half of figure 1, can be integrated to the terminal
time T. The final state xX(T) actually achieved will
generally fail to satisfy the desired terminal state as
defined by the target set. Similarly, the final values of
the adjoint variables pk(T) will fail to satisfy the bound-
ary conditions required depending on the target set. For
this reascn we will introduce a function to measure the dif-
ference between the actual boundary values and the desired
boundary values. The déficiencies pointed out in reference 8
of the scalar-valued metric will be avoided. We will par-
tially order systems by a vector-valued metric. Since there
will generally be three distinct types of boundary conditions
to satisfy at the terminal time, we will take the vector
metric of the form

J = (Jp, Iy, Ip) (6)

where the components refer to displacement, velocity, and
adjoint variables,respectively. vFor two systems S and S'

we will say S > 8' if and only if J > J', that is,

Jp > Jp's Jy > Jy', and Jp > Jp'. With this concept one is
concerned with choosing from a certain set of systems a
noninferior system rather than an optimum system. This
corresponds more closely with a realistic objective as pointed

out in reference 8.
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Assume now that the search is purely random with no
adaptive characteristics. TIn this case the dashed lines
indicated in figure 1 would be absent. Then as a result of
the random vector sequence {gk}, the vector sequence {Jk}
is generated. ©Since the search is purely random, the
algorithm logic decides at each iteration whether the value
of J has been reduced to zero.

Satisfying the boundary conditions is slightly more
involved than the above because in an experimental study it
is not likely the boundary conditions for x and p will
ever be precisely achieved. For this reason we will enlarge
the target set by some small amount and allow the system to
terminate at any point in the enlarged set. This view is
more realistic, since there is no reason to demand that a
practical system satisfy the boundary condition exactly.

To accomplish this in the random seafch method, we will
require of the vector metric

J<e (N
where

e = (ep, ey, ep)

The values of ep and ey are dictated by how closely it is
desired that the system states approach the desired target
set. The value of e€p 1s more difficult to choose because
of its lack of physical interpretation. Fortunately, the
hybrid computer approach makes it easy to choose a suffi-

ciently small value by experimentally observing the sensitivity
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of the solutions to small changes in ep. In an experimental
study to be described later, the solutions were quite insen-

sitive to variations in ep over a wide range.

The Adaptive Algorithm

The pure random search described in the preceding section
is generally unsatisfactory because of the excessively long
convergence times, as will be seen in a later example. We
attempt to improve the convergence properties by making the
system adaptive by varying the mean m and standard devia-
tion ¢ as a function of the system's past performance.

Since performance 1s determined by the input and output

sequences, {gk} and {Jk}, we will make the mean and standard

deviation adaptive of the form

1 k
mk+l fyl';{1+l(§l; 52) e gk) Jo: Jl: coe e JY)

(8)

k+1
g

Gkt o= g (eY, £3, .. L ek, 39, 0N, L L L TR

Some reasonable and easily implemented forms will be discussed
in the following paragraphs. A fundamental notion in the
algorithm will be that of a "success" or "failure" defined by
a Tunction of the cost Jk on any kth iteration and the
smallest preceding cost JZ obtained on the 1th iteration.
The most frequently used definitions were simply:

success: Jt - Jk >0

1

« (9)
failure: J- -J° <0



-10-
Obviously a successful iteration is both necessary and suffi-
cient for the system to be noninferior. It might be noted
that vhen any component of Jk is less than 1ts corresponding !
e componcnt, we will not require further reduction for a
success as long as it remains less than e.

Implementation of the adaptive part of the algorithm is
illustrated in figure 1 by the dotted lines and the algorithm
logic block. The algorithm logic block performs the computa-‘
tions in the above equations by utilizing: (1) the p~
information from the memory M@, and (2) the system verformance
information, Jk, from the memory Mj. The output of the
algorithm logic block is then the mean and standard deviation
of the dist;ibution for the next iteration as indicated.

The rationale behind the particular adaptive law to be
used here is based on the notion of a creeping, expanding,
and contracting search. The creeping character of the search
is provided by varying the mean of the distribution so as to
equal the initial condition of the adjoint vector on the last
successful iteration. The expansion and contraction charac-
ter of the search is provided by varying the standard deviation
such that the search is localized when successful but gradually
expanded when not successful. These characteristics give the

algorithm some useful search properties.
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The adaptive law for the mean value of the distribution

was taken to be:

m = p ir gk < gkt
(10)

B

i JgK > gkt

where the initial values are m! = O and J° is the value
based on the initial values x(0). That this law is of the
form (8) can be seen by combining (L) and (10) sequentially.

Thus, the first few terms of the sequence are

£l if Jt < J° 5 o 4
e = = £ (eh, 77, )
0 if Jt > J°

(e1 + 62 if J2<Jt<g® ) >
et ir F>J<J3° .

g =ﬁ ) = fno(et, £2, 3°, 7Y, I7)
£2 ir 1>3°% F<s°
L0 if 32, 3+ > 3° ) )

The adaptive law for the standard deviation of the dis-
tribution, ¢, was implemented so as to expand the size of the
search depending on performance. Let JZ be the metric
obtained on the last successful iteration. Then the law for

the standard deviation on any kth iteration is

(11)
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K=0 if k-qg<1
S Tl L, Lo B L (12)
te, ir 35 ... ge-(r-t)a 5 s
where the o4's are constants such that oy <o <. . . Oy -

In other words, 0; 1s used if there was a success in the last

q 1iterations, op 1if there was no success in the last q iter-

ations, og 1f no success in the last 2q 1iterations, etc.
These equations are, of course, a simple form of equations (8).
Occasionally,»depending on the difficulty of the particular
problem being studied, no success will be achieved in the vyq
iterations. TFor this reason, we repeat the search in equa-
tions (12) a number of times C (usually twice), and then
reinitialize the entire search if no success is achieved.

The parameters which are free to choose are g, ¥, and the
0i's; in the example to be discussed later values of q = 100
and 7y = 10 were chosen and they do not seem to be critical.
The choice of ¢ values is more important because 1t affects
both the smallness and the largeness of the search. However,
it is not difficult to choose reasonable values. A reasonable
lowest value, 03, can be determined by observing on the dis-
play system (yet to be described) the metric J on every
iteration, and choosing a value small enough so that the J
generally varies only slightly. ZFor the orbit-transfer

problem discussed later, g; = 0.1 volt proved satisfactory.
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The upper value is chosen to cover some sizable portion of

the entire space; a value of 10 volts seemed reasonable for

the 100 volt space available on the analog computer. In

between, the steps are a geometric progression to enable

the search to expand rapidly.

Several additional adaptive strategies were incor-

porated into the algorithm to provide better convergence

properties and greater versatility in certain situations.

They are itemized by the following:

1.

Single-step strategy -- This strategy is intended
to take advantage of favorable local properties of
the surface. Tt is based on the notion that the
step following a successful step k should not be
random but deterministic in the same direction and
of the same amount. That is, p~'~ 1is defined by
ir Fr _gkso (13)
The cost in time, one iteration, is insignificant,
and the benefits are substantial as will be seen in
a later example.

Threshold strategy -- In this strategy the require-
ment for a success is modified so that the differ-
ence between the cost for the kth iteration and
that for the last successful iteration (i.e., the
left side of equations (9)) must exceed some thresh-

0ld value dependent on the cost function. We take

the case in which the threshold is simply nJZ where

0 <n < 1. Thus, a success is defined by
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1

ELI LI L (14)

This strategy has the desirable characteristic that
smaller improvements are required as the minimum is
approached.

Localized end-search strategy -- This end-search
strategy is intended to localize the search when in
the immediate neighborhood of the minimum. This is
Jdone by reducing the standard deviation in equa-

tions (12) so that o varies from ag; to ac.y

when Jk < B, where 0 <a <1l, and B 1is some small
value generally on the order of 2e¢. This strategy
was used sparingly since it was beneficial in reducing
convergence time only under certain conditions.
Although a gradient method could be used in thig final
phase, the random search method accomplishes the same
objective without an implementation change.

Initial search -- It was found advantageous to control
the distribution from which the first successful
adjoint vector p(0) is obtained. This was done by
starting the search with a square distribution of
variable width, -W to +W. When a success is obtained
the search continues with a gaussian distribution as
described above. The rationale behind the square
distribution is that since no information is available

on the best starting value, the weighting within the
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limits should be equal. The size of W 1is a com-
promise: It must be large enough to include possible
solutions but not so large that the volume being searched
is excessive. The choice of W will be dependent, of
course, on the particular problem; it is not difficult

to choose experimentally a reasonable value. Values of
15 to 30 volts are typical for the later example

problem.

It is clear the behavior of the adaptive algorithm is
different from the pure random or nonadaptive search described
before. Now the vector metric J which measures the disparity
between desired and actual terminal boundary conditions is
sequentially reduced rather than being reduced in one iteration.

The way in which this occurs is illustrated in figure 2, where F

/A

a representative surface is given in only two dimensions. Due
to its adaptive character, after any success the mean of the
distribution moves to the last successful p. At this point
the search starts locally and inCreases in a geometric pro-
gression until the next success is obtained. In this way,
the successive values of J may jump from one valley to
another as indicated by the numbered points until a J less
than the required ¢ 1s reached. The algorithm logic block
decides when this condition occurs.

The virtues of the random search approach are clear. It

has desirable local and global search properties so that "hanging
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up" in local valleys as with gradient methods is avoided.
Further, it will not matter if the surface is discontinuous or
how many peaks or valleys there are. The main question is,
of course, the convergence time. This 1s best studied
experimentally on an example to be discussed in a later

section.

IMPLEMENTAT TON

Considerations in the Choice of Computer System

The hybrid computer proved to be the most feasible way
in which to implement the random search algorithm. The reasons
for this and a comparison with the alternatives are worth
discussing.

In general there are three basic computational techniques
available to the experimenter for the implementation: analog,
digital, or a combination of the two, hybrid. Of prime
importance in the selection of the computer system is a con-
sideration of the number of iterations required to find a
solution, and this number is not known a priori. Tor a
second-order system, pilot studies indicated something on
the order of 10° iterations to obtain a solution. Since
the volume of the space increases so rapidly with the order
of the system, one might expect several thousand iterations
to be necessary for an increase in system order to perhaps

five or six. Thus, we see that the time per iteration
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will be of critical importance and will largely dictate the
means for implementing the search algorithm.

Each iteration can be divided into two steps:
(1) integration of the equations of motion on the interval
[0, T], and (2) execution of the algorithm. For the orbit-
transfer problem to be discussed later, an IBM TO94 machine
requires 1-10 seconds to perform the integration in step 1.
An analog computer, however, performs the same integration
in 1-10 milliseconds with an accuracy of about 5 percent
relative to the digital machine solutions. Thus for this
specific example, the analog computer is about 10® raster
than the digital computer in performing the integration
in step 1. The second step is best accomplished digitally.
The time to perform the second step on a digital computer
of speed comparable to the IBM TO9L is the same order of
magnitude as the time required for the analog to perform
step 1. Therefore, a great saving in computer time can be
realized over a completely digital simulation by a hybrid
approach. It is worth noting that an alternative approach
was investigated utilizing pseudo-hybrid techniques, that
is, an analog computer and something less than a digital
computer. However, our experience shows that inaccuracies,
limited storage, and limited flexibilities in logical

operations seriously limit the feasibility of this approach.
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The Hybrid System

In the hybrid implementation the analog computer was
delegated the task of solviﬁg the state, adjoint, and control
equations, as given in equations(3). It also served as the
point at which the operator exercised manual control over
the hybrid system. The digital computer was required to
calculate the metric, provide storage, implement the algorithm,
generate the initial conditions for the adjoint equations,
and finally, oversee the sequencing of events of the iterate
cycle.

Figure 3 is a hardware diagram of the hybrid system used. Fig.
Shown are the two basic elements of the simulation, the
analog and digital computers along with their coupling system,
and peripherals. The coupling system is comprised of two
distinct parts: (a) the Linkage System and (b) the Control
Interface System. A discussion of the hardware used in these
subsystems is given in the four sections to follow. A final
section discusses the sequencing of events through the sub-
systems during one iteration cycle in order to better describe
the functioning of the hybrid system as a whole.

A. Digital Computer -- The digital computer used in
the optimization program was an Electronic Associates, Inc.
(FAI) model 8400. Tt is a medium-sized, high-speed computer
which is designed to operate in a hybrid atmosphere. The

particular machine used has 16,000 words of core memory
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with 32 bits per word. Memory cycle time is two microseconds.
The machine uses parallel operation for maximum speed. Float-
ing point operations are hardware implemented. Programming
languages available include a MACRO ASSEMBLY language and
FORTRAN IV. The optimization program was coded in MACRO

~ ASSEMBLY in order to keep the execution time to a minimum.
The instruction repertoire includes special commands by which
discrete signals can be sent to or received from the external
world. External interrupts are provided which can trap the
computer to a specific cell in memory. In an example to be
discussed later the optimization program utilized about

8,000 words of storage. Of this about 1,000 comprise the
actual optimization executive program, the remaining 7,000
being used for subroutines, monitor and on-line debugging

and program modification routines.

The peripherals of the digital computer include mag-
netic tapes, card reader, and printer. The two former
devices were used for program input and storage while the
latter device was used for data logging.

B. Analog Computer -- The analog hardware consisted
of an Electronic Assoclates 231R-V analog computer. The
state equations, adjoint equations, and the control logic
were programmed in standard fashion. Consequently, analog

schematics were thought not essential in this paper.
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The analog computer serves as the point at which mode
control of the hybrid computer is accomplished. By manual
selection of switches elther of two modes can be commanded:
(1) In the "search" mode the analog computer operates in a
high-speed repetitive manner. Such operation is accomplished
by controlling the mode of the individual integrators with
an appropriate discrete signal. This signal is a two-level
signal which is generated on the control interface in con-
Junction with the digital computer and, depending on the
level, holds an integrator in either "operate" or "initial
condition" mode. (2) In the "reset" mode, the integrators
are placed in their initial-condition mode and held there.

Particular equipment worth pointing out are the track-
store units, D/A switches, and comparators with which the
control logic was implemented. At the end of the operate
period T, the digital computer reads a number of variables
essential to its functioning. Because of the high repeti-
tive speeds used, the value of é variable could change
considerably between the end time T and a later time when
it is actually converted. Thus, track-store units were
used to hold the variables at their respective values at
time T until the digital read all of the values. The
control logic requires on-off type switching and the high-

speed electronic comparators and electronic switches were
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quite necessary for proper operation. Nonlinear operations
such as multiply and divide provided no particular difficul-
ties, in their normal operation, although a square root
operation did require the use of a diode function generator.

For continuous type output, a display console was con-
nected to the analog computer to provide visual readout of
variables. The display contained a cathode ray tube (CRT)
which could simultaneously display up to four channels,
and enabled photographic records to be taken of the display
quantities. The display was extremely helpful in determining
if the algorithm was functioning properly. Other continuous
analog data useful for determining proper functioning were the
pz and Jz; these could be recorded on a pen recorder since
their rate of change was low.

C. Control Interface -- The control interface between
the analog and digital system is an Electronic Associates,
Inc. DOS 350 (see fig. 3). Tt is through this unit that
the iteration process is controlled. An important task
allocated to this subsystem is the operate-time control. This
function is implemented through the use of a counter and
is the key element in the control of all timing in the hybrid
simulation. The counter is driven from a high-frequency
source in the interface system allowing for a very high degree
of resolution in the simwlated operate-time. The counter is

constructed by patching modular blocks which can be combined
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to give a wide range of simulated operate-time. Specific
times within this range are selected with thumb-wheel switches.
Also, the interface allows the digital computer to use any
conditions in the analog computer which can be represented
by discrete variables (binary levels) and to send discrete
signals to the analog system to be used as control levels or
indicators. An example of the former would be the hybrid
system mode control which merely amounted to the operator
depressing the "reset" or "search" switch on the analog
console. This action sets a binary level which is then
sensed by the digital computer. An example of the latter
situation is when the digital sends the operate command to
the operate-time counter. The interface system allows
patching of Boolean functions. Hence, some of the logic
operations required for timing pulses, event signals, and
other like operations were very effectively programmed on
it.

D. Linkage System -- The linkage system which is
shown in figure 3 is that part of the system which houses
the conversion equipment, the A/D and D/A converters. Tt
is through here that all of the data passes between the
analog and digital portions of the simulation. The linkage
system is controlled by command from the digital computer.

Tnput to the digital computer is through the A/D

converter which has preceding it a channel selection device
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or multiplexer to select the analog channel which is to be
converted. Conversions were done sequentially through the
analog channels at a maximum rate of 80,000 samples per
second from channel to channel.

Output to the analog used the D/A converters with each
data channel having its own conversion unit. The maximum
conversion rate of the D/A's used is 250,000 conversions
per second.

E. Sequencing of Events During One Iteration -- The
sequencing of events during one iteration cycle are depicted
in figure 4. The instants of time +t3, ts, . . ., ts shown
in this figure are considered fixed relative to each other,
and t; is conveniently regarded to be the start of the
iteration cycle. We will consider the cycle to begin at

t1 with the analog integrators in an operate mode. As

discussed previously, the elapsed time (ts - t1) is controlled

by a counter on the interface system. At +to an interrupt
pulse is generated on the control interface which is sent to
the digital computer signaling it to commence its operations.
Simultaneously, the pulse is sent to the analog to instruct
the track-store units to hold their respective values which
they possessed at time ts. During the interval (tz - t2)
the digital computer reads these analog variables with the

A/D converter. At tsz the digital sends a pulse via the

Fig. k4
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interface to the analog console which commands the integrators
to an initial conditi on mode. At t4, when the data required
by the algorithm has been generated the D/A converters send
these values to the appropriate points in the analog portion
of the simulation. The digital machine allows enough time
for the transients to settle in the initial condition circuits
of the analog before sending a command at +ts that places the
integrators in an operate mode and starts the counter. Since
ts and t; are the same event, we merely repeat the above
sequence for repetitive operation.

Some specific numerical values might be of interest.
The total iterate time (ts - t,) is primarily composed of
two parts: (1) (%o - t1) which in a later example problem
was scaled in the simulation to 2.5 milliseconds, and (2)
(ts - ts), which was primarily determined by the speed of
the digital machine in computing, converting, and generating
random numbers; this latter peripd was on the order of
T.5 milliseconds. Thus, the total iterate time for the above
situation is on the order of 10 milliseconds (or 100 iterations
per second). This figure is dependent on the control problem
chosen and the exact form of the algorithm implemented.

The Algorithm Flow Graph

A program flow graph which shows the operation of the

iteration process is displayed in figure 5. This basically <:§Eé.
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is the flow graph of the algorithm and the iteration control
sequences utilized by the hybrid system. Note the inclusion of
the event times t;, ts, . . . discussed earlier in connection
with figure 4. The program is continuously recycling in a
high-speed repetitive fashion.

There are three basic loops which correspond to the
three system modes in the optimization program: a reset
lcop, a search loop, and an end-state loop. The reset loop
is for the purpose of initializing the program. The search
loop is that portion of the program which uses the algorithm
to search for a solution to the problem. The end-state loop
is entered by the digital program when a solution is found,
and is used for the generation of graphic displays. The
operator manually selects the search or reset mode as dis-
cussed in the section dealing with the analog computer.

A. Reset Loop =-- The reset loop is the portion of
the repetitive operation cycle which initializes the program
and prepares it for the search mode. When the system is in
reset mode, the integrators of the analog computer remain
in their initial condition state. The flow of the reset
cycle is shown in figure 6 where that particular loop is Fig.
emphasized by line weight, figure 6 being the same as .
figure 5 otherwise. Tt is while the system is in the reset
mode that the digital program is first entered, the point of

entrance being designated by START in the figure. The first
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operation performed is that of initialization. It is during
this process that all the program variables are set to their
initial states. Also, the line printer is initialized and
and the data header printed. Once complete, the interrupt
line is enabled and the analog computer signaled that an
iteration cycle is to begin. It is at this point that the
counter which controls the operate time of the analog is
started. The digital computer than halts and waits for an
interrupt to signal that the period T has ended.

When the interrupt octurs, the digital program proceeds
to the next operation where the values of the states Xk(T)
ani pk(T) of the analog computer are read by the A/D converter.
Once the inputs to the digital computer have been read, a
pulse is sent to the analog computer to place the integrators
in their initial condition mode. Since the integrators are
already in initial condition state due to the reset mode,
this pulse has no effect but it 1s needed later when the
system is in the search mode or the end-state mode where the
integrators are not so constrained.

The next operation performed is that of calculating the
metric, Jk, based on the samples of the state obtained in
the last block. This value is peculiar to the reset mode

and, therefore, is designated J° and saved as such. Once



-27 -

the metric is calculated, the digital computer tests the
system mode and branches to that portion of the program
which is exclusive to the reset loop.

The program now initializes the algorithm by setting
k= pl(O) =0 and J* = J°. The values of the components
of pk(O) are then generated using a uniformly distributed
noise source, the space of the noise being [-W, W]. Note
that in reset mode pX(0) = gk.

At this point the reset loop returns to the mainstream
of the program by entering the output portion of a cycle.

It 1s here that all of the quantities required at the analog
computer are converted tc analog form by the D/A converters.
The data sent to the analog include pK(0), pl(0), J!, and

JK. Note that pk(O) is required by the analog computer
whereas the others are displayed to determine if the algorithm
is functioning properly.

Finally the digital program enables the interrupt line
and signals the analog computer and control interface to
begin another cycle. As before, the program now goes into a
halted state waiting for the interval T to pass. Cycling
in the reset loop continues until the operator is ready to
begin a search cycle and does soO by putting the hybrid system
in the search mode.

B. The Search Loop -- It is in the search mode that the

algorithm is used to seek an optimal solution to the control
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problem implemented. Search mode is selected by the operator
at any time and is considered to begin on tﬂe first iteration
after his doing so.

During the first iteration of search mode, the analog
computer solves the system, adjoint and control equations
using the p(0)'s established in the last cycle through the
reset loop. The digital computer then receives the time T
interrupt signal and proceeds to read the states xk(T) and
pE(T) as shown in figure 7. Once read, the integrators are <{Fig. 7
set back to initial condition where they will awalt the next
p(0) to be generated by the algorithm. The next operation
computes the metric as was done in the reset loop; only this
time the JX 1is based on the actual solution of the system
equations at time T.

The system mode test is next and results in a branch to
that portion of the program that solves the algorithm and
generates the p(0)'s based on the adaptation principles.

The search branch begins with a test to determine if the

system is in end state. Since this is the first time through

the search loop, end-state condition cannot have been established
so the program proceeds to the operation which tests the metric.
Here all of the components of the metric are tested according

to equations (9) and the condition of a success or fallure

ascertained as discussed before.
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At this point in the discussion we shall take the results
of the metric test to be a success so that that portion of
the search loop can be examined. The first operation in this
segment up-dates the memory of the algorithm by setting the
last good values of the p(0)'s to p¥(0), the vector which
gave this success, and by setting the last good metric Jt
to J¥. Next a test is made on the metric to see if it

meets the requirement of a solution, i.e., gt

< €. Assume
for the moment that it does not and that the program proceeds
out the lower branch of the test. The program then generates
the next try for the adjoint initial conditions on the basis
of the single-step strategy. Following the establishment of
pk+l(0) the program tests JX  to determine if the end-search
strategy should be employed by comparing Jt with & If
JZ is less, the noise standard deviation sequence is reduced
through multiplication by the constant «j; if J' is not less
than &, the standard deviation is unaltered. Then after
setting ¢ to the starting value o,, the program execution
returns to that part which is common to all loops, the output
portion. The program then starts the next iteration exactly
as it does in the reset loop.

If the test of the metric had resulted in a fallure, the
program would have branched to the right after the metric test
shown in the flow graph. Here the primary function is to

generate a new set of adjoint initial conditions using the

noise generator as discussed in the description of the
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adaptive algorithm. Before the actual geﬁeration of pk+1(0)
can take place, however, certain of the algorithm parameters
must be examined. These parameters control the maximum time
at a given o 1level, the changing of ¢ levels, and whether
or not to start the search anew. First, a test is performed
to find out if gq consecutive trials have resulted in
failures. If not, ¢ remains fixed and the program executes
the jump ahead shown; if true, o 1s incremented to the next
value in the sequence (oy, . . ., oy). Next is a test to
determine if o > 0y. If not, a jump ahead is executed. If
it is, then a test is made to determine if the sequence has
been gone through C +times. If so, the program will reini-
tialize itself by entering the reset loop for a new start.
This does not put the hybrid system in reset state but only
restarts the aigorithm. If the program did not reinitialize,
then o 1s set to o3, to prepare it for another cycle
through the sequence.

This brings the execution of the program to the generation
of the noise vector §k+l (where it would have been if there
were less than q consecutive failures or 1f o was not
greater than 07). The distribution of the noise generator
is uniform over the space [ -W, W] if no success has been
achieved since first entering the search loop. Otherwise the
distribution is gaussian with zero mean. Next, the new

adjoint initial conditions are obtained by adding §k+l
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to the last set of adjoint initial conditions which produced
a success, and the program moves to the output section.

The search mode continues reducing the metric by the
selection of p(O) until a value is found which gives a
solution to the simulated control problem. This solution is
sensed at the point in the program where JZ is compared
with €. This test results in a branch to the left where
the first operation is to set up the end-state loop condi-
tion. Next, the data representing a solution arelogged on
the printer and the new adjoint initial conditions set to
the value which gave the solution. The program then goes
to output with the system set to perform the end-state loop.

C. End-State Loop -- The end-state loop is shown in
figure 8 by the line weight emphasis. In end state the
integrators still sequence through their initial condition
or operate modes Jjust as in the search mode. However,

p(0) remains fixed at that value which produced the solution.
In this manner it is possible to observe the optimal solutions
found by the search algorithm on the CRT display described
earlier.

AN EXAMPLE ORBIT -TRANSFER PROBLEM

In this section the usefulness of the random search
algorithm in solving a moderately difficult problem will be

discussed. An orbit-transfer problem was selected because
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it is high order, nonlinear, and is the type of problem for
which optimization is appropriate. That is, since such large
amounts of fuel are involved in effecting an orbit transfer,
it would be profitable to minimize the required fuel. In the
first four subsections, we will formulate the problem, show
the equations which result from an application of the Maximum
Principle, and discuss the boundary conditions and the asso-
ciated metric; in the last four subsections, we will present
some experimental results on the characteristics of the random

search algorithm and on the orbit-transfer problem.

Formulation

The particular orbit-transfer problem considered was a
transfer from an earth-moon trajectory to a circular orbit
around the moon. The physical situation is illustrated in
figure 9 for the planar situation. The final desired orbit Fig.
is a circle 190 km above the lunar surface, i.e., a circle
of radius 1928 km. The midcourse corrections might have
placed the vehicle on some typicél orbits as shown in which
pericynthian may or may not coincide with the desired final
orbit. The equations of motion in the vicinity of the moon
will be governed by two-body equations and the trajectories
will be hyperbolas as indicated. For purposes of simulation,

a good coordinate system to describe the motion is the rotating
coordinate system shown in figure 9; the origin is on the
circular orbit and its velocity is the same as for

a particle in that circular orbit. This coordinate system
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is a desirable one to use because it subtracts out large
constant values from the inertial coordinate system. Assuming
the vehicle is to be controlled by gimbaling a thrusting
engine in which the mass flow rate is used to vary the thrust,
the exact equations of motion in the rotating coordinate

system shown in figure 9 are:

)
-m(t)c cos a + m(t)(w2 - ﬁ%)x

m(t)X - 2um(t)Y

+ M(t)<w2 - %) ro ) (15)

r

m(t)¥ + 2wm(t)X

-m(t)c cos B + m(t)<;2 - ﬁ%)Y'J

The gimbaling implies the constraint

cos® a + cos®B = 1 (16)

In the above equations m(t) is the vehicle mass, w 1is the
angular velocity of the rotating coordinate system, c 1is
the exhaust velocity, o and B are the angles between the thrust
vector and the X and 9( axes, respectively, r 1is the radius
to the vehicle in the inertial coordinate system, r. 1is the
radius of the desired circular 6rbit, and K 1is a gravita-
tional constant. Typical values used were m(0) = 39,096 kg,
¢ = 3.1405 km/sec, r, = 1928.68 km, p = 4,890 km®/sec?,
a(t) = -31.07 kg/sec, w = 8.259x10™* r/sec.

Now if we let =xy = X, Xp = k, X3 =Y, X4 = Y, and
Xg = m(t), the equations of motion can be put in the state
vector form

x = f(x, u)
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wvhere x = (x1, Xz, X3, X4, Xs5) and u = (uy, us, us). In
expanded form we have the set of five nonlinear differential

equations:

}.Cl = Xo .

) cuy us

Xo = 2wxgq + = <;2 "%%>Xl‘+ <§2 - i%>rc
Xs T r

).(:3 = X4 (17)
CunUg

Xg = - + + (? - B

X4 200)(2 g < I'3>X3

Xs = -ug

where u; = cos @, us = cos B, and us = -m(t). It is worth

noting with respect to simulation accuracy that by using the
rotating coordinate system the terms involving r which are
difficult to simulate accurately provide small corrections
to the more dominant terms involving only the states in the
rotating coordinate system. These correction terms cannot
be ignored, however. A simpler model which ignores these
terms was found to introduce significant errors in end
states and fuel required.

The task to be accomplished is to minimize the fuel to
go from a given position on the hyperbolic orbit to the
circular orbit. Thus, the quantity of fuel used is intro-

duced as the added coordinate:
.t »
xo(t) = [ us(m)ar (18)
(o]

and we can interpret the objective as the minimization of

the terminal value Xo(T). This additional coordinate
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requires the corresponding differential equation

%o(t) = us(t) (19)
to be adjoined to the set (17).

Maximum Principle Solution

Although application of the Maximum Principle to the
present problem will not be given in detail here, the equa-
tions important to the hybrid computer implementation will
be summarized. First are the adjoint equations which are
fundamental to the development. The approximate adjoint

equations can be shown to be

Do =0 )

. K
b= - %)
:bz = -pp + 2“‘@4 $

. M
b= 2 - )

P, = Py - 2wp,

(20)

L

X5

e
"

Second are the equations for the optimal control vector which

have been derived from the Maximum Principle:
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P2 W
Uy = —

el
W - 22

el \

(21)

us =M 1f v = |p|| - é? (pg + 1) >0

0 otherwise

where |[p|| = /pze + p,2 and M 1is the magnitude of the

maximum thrust. It is seen that the thrust magnitude is
either on or off depending on the sign of the switching
function v, and the thrust angles are continuous functions
of the adjoint variables. To obtain an explicit solution,
it is now necessary to solve simultaneously by means of the
analog computer the equations (17) for x, equations (20)
for p, and equations (21) for control u, subject to
certain boundary conditions yet to be discussed. The auxil-
lary differential equations for x,(t) and py(t) do not
couple to the other equations; they can, therefore, be dropped
in the implementation to be described later.

Boundary Conditions

The boundary conditions, as yet unspecified, are the
heart of the random search method. The initial values for
the state vector x(0) are fixed at the given values while
the initial values of the p(0) vector are chosen by the

algorithm. The desired terminal conditions can be specified
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in a variety of ways depending on the target set chosen.

On the one hand, the end points could be treated as fixed at
some point such as the origin of the coordinate system. This
is somewhat restrictive. On the other hand, the end points
could be treated as variable by taking the target set to be
the desired circular orbit. This approach would yield the
best point in the target set but would require complicated
transversality conditions to be satisfied. We will take

a middle ground in the interests of not unduly complicating
the problem. We will take the target set to be the desired
circular orbit, but we will consider the end point fixed at
whatever point in the target set is reached in the fixed
time, T. The advantage of this specification is that the
boundary conditions are somewhat simpler than if transver-
sality conditions had been included. With these boundary
conditions the vehicle will reach some point on the desired
circular orbit but perhaps not the best point. However, as
we will see in a later example, the fuels for the large
majority of solutions were so close to the theoretical mini-
mum fuel based on impulsive orbit transfer that it does not
appear that satisfying transversality conditions could result
in a better solution with lower fuel. This conclusion was

found valid over the range for which the problem was studied.
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The specific values for the terminal boundary conditions can

be found from conventional theory and summarized as:
x1 (1), %2(T), xa(T), x4(T) fixed

x5(T) free

P (22)
p1(T), po(T), pa(T), p(T)  free

p5(T) =0 fixed |

The Vector Metric

For purposes of satisfying the boundary conditions, the
components of the vector metric J need to be specified.
Since the target set is taken to be the circular orbit, a

suitable displacement metric is

Jp = |r(t) - el (23)

where 1rc 1is the radius of the desired circular orbit. As
for the velocity metric, it is clear that for the vehicle to
stay close to the desired circular orbit after the terminal
time T, we would like: (a) the radial component of the
inertial velocity, VR, to be small, and (b) the tangential
component, Vg, to0 be close to the velocity consistent with
that for the circular orbit, i.e., row. Thus, a reasonable
metric which measures the errors in these velocity components

is

Z
Iy = (rew - vp)® + Vg2 (2k)
The quantities Vp and Vg are simple transformations of the

states in the rotating coordinate system. The only adjoint

variable which must be fixed at the terminal end is bs SO



that we use simply
Jp = ps2(T) (25)
The values to which the components of J must be reduced

are somewhat dependent on the mission and accuracy require-

ments after the terminal time. For most of the study values

were chosen to be

€y = 8 km
ey = 15 m/s (26)
€p = 0.5 volt

This velocity requirement reduces the terminal inertial veloc -
ity to less than 1% of the initial value. The adjoint variable
requirement was readily found experimentally. As mentioned

in the discussion following equation (7), values of ep

several times this value were found to be satisfactory.

Behavior and Characteristics of the Algorithm

The implementation of the random search algorithm for
the orbit-transfer problem follo&ed closely the discussion
in a previous section and no further details will be given
here. With this implementation the algorithm was studied
to determine some of its important properties and the effect
of some of its possible variations. The results of such

studies will be discussed in this section.
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In order to study the algorithm, we will confine our
interest to one particular situation of the orbit~transfer
problem. This situation was chosen such that the vehicle is
approaching the moon on the hyperbolic orbit number 2 as shown
in figure 9. Pericynthian coincides with the desired final
circular orbit, which is 190 km above the lunar surface.
Rather arbitrarily the initial starting point was chosen
as -370, and the time allowed for the vehicle maneuver was
taken to be 600 seconds. For comparison, the time to reach
pericynthian with zero comtrol is 534 seconds.

There are two displays which well illustrate the manner
in which the system iterates and searches for & solution. The
first display illustrated in figure 10 gives information about <Fig. 10
the successive improved iterations. In this figure is shown
the successive improved values of the initial adjoint vector
p(0) and the corresponding decrease in the boundary cost
functions Jp, Jy, and Jp. It is worth noting the creeping
nature of the ps(O) value to a solution value of 2L volts
even though the initial square distribution was #15 volts
and the maximum standard deviation of the gaussian distribu-
tion was gy = 10 volts. This situation occurred often.

The second display, illustrated in figure 11, provides infor- FPig. 11
mation about every iteration. Here the values of the boundary
cost function Jp, Jy, and Jp are shown for every iteration

and the successful iterations. It can be noted that when
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no improvement is obtained in the J vector, the search
gradually enlarges until an improvement is found. At this
point the search is localized. With this type of display
it is easy to select a rational value for the lower 1limit
of the standard deviation, o;.

The convergence time to obtain a solution is certainly
one of the central considerations in the random search method.
Since this time is a random variable, data were taken to
give suitable averages and some indication of their accuracy.
In terms of the number of iterations, N, required for a solu-
tion, it was found from 70 solutions for the particular
situation described above that

N

7,72k
5,142

N
Thus, the average length of time to obtain a solution is
about 1.25 minutes. The value of oy gives some indication
of the accuracy to be expected for measurements of other
situations. For example, if 25 trials are made for another
situation, we would expect the standard deviation of the
average to be o = cN/Uﬁﬁga 1,000. This relation is only
an indication, however, since the standard deviation, oy,
would not likely remain the same for other situations.

Next, we will examine some of the possible variations

in the algorithm and its parameters to indicate their relative
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effects on the convergence. Although these effects are studied
for the given problem situation, the trends are generally valid
for other situations.

First, the effect of the threshold strategy is shown in
figure 12. The wvalue of 7 = 0 corresponds to removing the <:§E§
threshold strategy. Also, a standard deviation is shown on
the curve. It is worth noting that some improvement can be
obtained by increasing 7.

Second, the effect of the one-step strategy, the end-
search strategy, and an increased initial search size are
given below with standard deviations as indicated. It is

Average number

of iterations

Algorithm with: one-step strategy
end-search strategy 7,724 + 610

normal initial search size

Algorithm without one-step strategy 12,707 £ 1,150
Algorithm without end-search strategy 7,065 + 1,626
Algorithm with twice initial search size 9,971 = 766

seen that the one-step strategy is fairly effective, since

its deletion increases convergence time by 65%. It was always
beneficial in terms‘of convergence, costs so little in search
time, and was, therefore, always employed. On the other hand,

it is seen there that the end-search strategy is slightly

.12
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deleterious for the given situation and increases convergence
time by 10%. This increase is not too significant, however,
in view of the likely standard deviation. The end-search
strategy aﬁpears to be of greatest value when the algorithm
has iterated to the neighborhood of the minimum and has dif-
ficulty in meeting the boundary conditions; such a situation
might exist perhaps in the neighborhood of a very sharp
valley. In these cases, the end-search strategy greatly
reduces the size of the search and enhances the certainty
of finding the minimum. The effect of initial search size
on convergence is interesting. It is surprising to note that
an increase in the initial search size of 100% in all five
adjoint variables (32 times larger volume) resulted in an
increase of only 30% in convergence time.

The initial starting value J° 1is another parameter in
the algorithm which is somewhat arbitrary. The effect of
different starting values, in figure 13, shows that convergence
is fairly flat within a wide range. At the lower values, the
convergence time increases sharply because the search approaches

the pure random search.

Results for Orbit-Transfer Problem

In this section we will illustrate in some detail the type
of results obtained for one particular situation, the same

situation as in the preceding section.

Fig.

13
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A typical solution which was obtained by the random
search algorithm is illustrated in figure 14 by the rather Fig. 14
complete set of time histories; shown are the system states
in the rotating and inertial coordinate systems, the control
vector, and the adjoint variables. Perhaps the most interest-
ing are the velocities x, and x4 1in the rotating frame which
can be seen to be reduced from large values of around -900 m/s
and 400 m/s to small values in order to reduce the inertial
velocity components, VR and Vp, to near their desired values.
Also the quantity r - r,, the difference between the vehicle
terminal radius and the desired circular orbit radius can be
seen to have been reduced to a small value so that the vehicle
will end up close to the desired orbit. The terminal inertial
value 9{ is slightly positive indicating the desired orbit
was attained slightly past pericynthian. The optimal control
vector is also of interest; it is indicated that the thrust
should be turned on at about 260 seconds before the fixed
final time and directed as shown.

Average performance and its variation are perhaps more
significant than an individual solution. Observation of 70
solutions revealed that their time histories were only
slightly different. In terms of the end states and fuel

used, the following statistics were obtained:



Ave fuel = 10,230 +80 kg
ave X = 1,935 +5 km
Ave 3{ = 33 +8 km
Ave r(T) -1, = 6 *5 km
Ave Vp - row = +7 m/s
Ave Vg = 1 +12 m/s

Tt is worth noting here (fromX , l[, and T - r,) that the
set of reachable points is centered slightly further out
than the desired circular orbit and slightly past pericynthian}
the standard deviation shows this set is confined to a very
small region. The inertial velocities indicate that they have
been substantially reduced from the initial total magnitude
of approximately 2400 m/s. The fuel data are interesting
because the figures are so close to the idealized minimum-
fuel impulsive orbit transfer of 10,120 kg.

Tt is significant to note that from this same set of
70 solutions, the solutions for the initial condition adjoint
vector p(0) were vastly different even though the time
histories of the system states were so close. The extremes
observed as well as the p(0) vector corresponding to fig-
ure 1b are as follows.

Adjoint Values for

Extremes
variable _ figure 14
1 -31.98 to +7.15 -11.36
P, +1.08 to +14.67 +8.96
Dy -8.33 to +35.60 -.54
D, -11.9% to +5.45 -9.25
-7.98 to +8.11 -6.30
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These results are significant because they illuminate the nature
of the mapping p(0) = J. In geometrical terms, discussed in
more detail later, these results mean that the boundary cost func-
tion hypersurfaces have many stalactites protruding below the
€ level.

Variations in the time allowed to reach the desired orbit
were studied with much the same type of results as in the
preceding two paragraphs. Solutions were obtained for times
from 550 seconds to 850 seconds (the time to reach pericynthian
with zero control was 534 seconds). The main difference in
results obtained was that as the allowable time increases, the
set of reachable poinﬁs as given by )C and Sl moves further
around the desired circular orbit and the fuel requirements
appear to increase. For example, for T = 850 seconds,

X ~ 1828 km,é{;e 658 km, and the fuel required increased by
about 300 kg. When the allowable time is outside the range

given above, no solutions could be obtained.

Results for Other Situations

The algorithm was experimentélly tested on a variety of
situations. They include different initial points along each
of the three trajectories as indicated by the grid of points
in figure 9, different allowable times for the vehicle to
reach the desired point, and variations in some of the
vehicle design parameters. A sampling of some of these data

and a few comments are appropriate.

Figures 15 and 16 show two different solutions to the Figs.

15

nd 16

same problem in which the starting point is further along on
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orbit 2 (-130) than in the previous two sections. These
solutions are interesting because of the unusual control
functions found. One of the control solutions has two thrust-
ing periods (on-6ff-on) with the initial thrusting being quite
long; the other solution has only one thrusting period (on-off)
and again the initlal thrusting is long. In contrast, most
of the solutions found for other situations have only a single
thrusting period of the off-on type.

Next, figures 17 and 18 illustrate solutions which were éz-é’(

n
obtained on orbits 1 and 3. On orbit 1, the solutions showed
there was always one thrusting period of the off-on type (see
fig. 17) for all starting points along the orbit and all times
T for which solutions could be obtained; the fuels used were
close to the values obtained on orbit 2. On orbit 3, the
solutions nearly always consisted of the more unusual two
thrusting periods of the on-off-on type (see fig. 18). It
was also noted that solutions were quite difficult to obtain
on orbit 3 and that the fuels required were approximately
1500 kg greater than on orbits 1 and 2. No explanation was
apparent.

Finally, it was demonstrated that the random search
approach could be of considerable value in preliminary vehicle
design. TFor this purpose the effects of varying some of the
initial vehicle design parameters were investigated, namely,

thrust level and mass. It is significant to note that solutions
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could readily be obtained with engines of 75% and 50% of
the hormal thrust capability used in the previous portions of
the study. Similarly, there were no difficulties in Obtaining
solutions for different initial vehicle masses.

Boundary Cost Function Surfaces

Perhaps the most illuminating results were revealed by an
experimental study of the mapping: p(0) = J. Geometrically
this mapping can be interpreted as three hypersurfaces (rep-
resenting the components of the metric J), which are functions
of the five adjoint initial conditions. The character of the
cross sections through these surfaces at a solution point is
given in figures 19 and 20 for the two different problem Figs. 19

and 20

situations indicated. These curves were obtained by slowly
varying one of the adjoint variables from -100 volts to +100 volts
while all the others were fixed at their respective solution
values. In this manner cross sections through the hypersurfaces
passing through a solution point were plotted. Note the dip
in all three surfaces at the optimum value of the adjoint
variable. The interest in these curves 1s, of course, in
the rather irregular, multi-valleyed nature of thé surfaces
as well as the rather narrow valleys surrounding the optimum
point. The sharpness or narrowness of this valley gives an
indication of the difficulty in finding the solution. Further,
these surfaces clearly indicate the difficulties which gradient
methods would have because of the likely possibility of "hanging

up" in the wrong valley. The two-dimensional cross sections



-49-
shown give only a hint of the difficulties to be encountered
in the actual six-dimensional space.
Another more pictorial representation (for the same

problem situation as in figure 19) is given by the three-

dimensional views in figure 21. Here are shown the boundary <:EE%.

cost function surfaces in the p1, po plane and in the pq,
p, ©Dlane while all other adjoint variables are fixed at their
solution values. These results illustrate the character of
the surfaces away from the optimum point in two directions
instead of only one direction.

Further clues as to the nature of the boundary cost
function surfaces are revealed by previously presented data
in which it was shown that many distinctly different p(0)
vectors result in solutions. The significance of this type
data 1s that it shows that the surfaces have many stalactites

which protrude below the € level.

CONCLUDING REMARKS

It 1s worth emphasizing that the objective in the: present
study has been to devise and dembnstrate a feasible method of
implementing the Maximum Principle based on an adaptive random
search algorithm. It has been demonstrated that the computa-
tional requirements are most effectively implemented on a hybrid
computer system. The method has been shown to be a practical
approach to generating explicit optimal solutions for a moderately

complex example problem under a wide range of situations. The

21
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versatility and ease in obtaining solutions makes it a valuable
approach for preliminary system design because it allows one

to study the tradeoffs among various initial design choices in
terms of performance. More generally, the method could be
applied to any two-point boundary value problem or to parameter
optimization of systems with given configurations.

More effective utilization of the method either in an
on-line or off-line implementation could be realized by an
increase in the iteration rate. Such increases will in
general have to be the result of advances in hybrid systems.
However, a moderate increase in rate could be realized with
the present system by careful redesign of the program.

Undoubtedly the most important limitation of the method
is due to the minimum resolution of the analog computer.

Thus certain problems with excessive dynamic range might be
excluded.

The approach has a number of advantages over alternate
approaches. It 1s conceptually simple, straightforward, and
easily implemented. It can be a?plied uniformly within its
limitations. No restrictions are placed on the boundary
surface, and an analytical expression for the surface is not
required. The algorithm's local and global search properties
provide it with theAability to jump from one local valley to

another so that "hanging up" in local valleys is avoided.
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FIGURE LEGENDS

[
J

Hybrid system block diagram for random search method.

2.- Typical boundary cost function surface.

3.¥ Hybrid system hardware.
L. - Sequencing of events during one iteration.
5.- Algorithm flow graph.

6.- Reset loop.
T.- Search loop.
8.- End-state loop.

9.- Geometry of orbit-transfer problem.

10.- Behavior of successful iterations during search.
11.- Behavior of every iteration during search.
12.- Effect on convergence of threshold strategy.
13.- Effect on convergence of varying initial value Jo.
1kh.- Time history solutions; orbit 2, x(0) at -37°,
T = 600 sec.
15.- Time history solutions 1; orbit 2, x(0) at -139,
T = 4OO sec.
16.- Time history solutiomns 2; orbit 2, x(0) at -13°,

T = 400 sec.

17.- Time history solutions; orbit 1, x(0) at -60°,
T = 971 sec.

18.- Time history solutions; orbit 3, x(0) at -60°,

T = 1075 sec.
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Figure 19.- Two-dimensional cross sections of boundary hyper -
surface; orbit 2, x(0) at -37°, T = 600 sec.

Figure 20.- Two-dimensional cross sections of boundary hyper-

surface; orbit 3, x(0) at -60°, T

1]

1075 sec.

Figure 21.- Three-dimensional cross sections of boundary hyper-
surface; orbit 2, x(0) at -37°, T = 600 sec.

(a) p1, P2 Dplane.

Figure 21.- Concluded.

(b) p1, Psa plane.
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Figure 5.- Algorithm flow graph.
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Figure 21.- Three-dimensional cross sections of boundary hypersurface;
orbit 2, x(0) at -37°, T = 600 sec.
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Figure 21.- Concluded.
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